977

Uptake of Carbon Monoxide and Oxygen by $RhCl(CO)(PPh_3)_2$ and Catalytic Oxidation of Carbon Monoxide and Triphenylphosphine

By JITSUO KIJI and JUNJI FURUKAWA*

(Department of Synthetic Chemistry, Kyoto University, Kyoto, Japan)

Summary The compounds $Rh_2Cl_2(CO)_4$ (II) and RhCl-(CO)₂(OPPh₃)₂ (III) have been prepared from the reaction of RhCl(CO)(PPh₃)₂ (I) with a mixture of carbon monoxide and oxygen; (III) reacts with triphenylphosphine to produce (I).

We have found that $RhCl(CO)(PPh_3)_2$ is converted under a moderate pressure of carbon monoxide and oxygen into $Rh_2Cl_2(CO)_4$ (II), $RhCl(CO)_2(OPPh_3)_2$ (III), and triphenylphosphine oxide (IV)[†] and that a small amount of carbon dioxide is formed. Application of heat (*ca.* 100°) under pressure (*ca.* 10 kg/cm²) facilitates co-ordination of oxygen, oxidation of ligands, and carbon monoxide uptake. The complex (III)[‡] reacted with triphenylphosphine to yield (I) and (IV), and carbon monoxide was evolved vigorously. Similarly, the co-ordinated dimethyl sulphoxide of RhCl-(CO)(Me₂SO), (V) was oxidized.

We have extended the reaction of RhCl(CO)(PPh₃)₂ and RhCl(CO)(Me₂SO)₂ to catalytic oxidation. As shown in the Table, catalytic oxidation of carbon monoxide and triphenylphosphine catalysed by RhCl(CO)(PPh₃)₂ was slow. The oxidation of carbon monoxide catalysed by RhCl(CO)-(Me₂SO)₂ was faster than that by RhCl(CO)(PPh₃)₂. The complex RhCl(CO)(PPh₃)₂ was recovered unchanged at low conversion of triphenylphosphine into triphenylphosphine oxide, whereas RhCl(CO)₂(OPPh₃)₂ was formed at complete conversion. Attempted catalytic oxidation of dimethyl sulphoxide was unsuccessful.

There is a similarity between co-ordination in homogeneous catalysis and chemisorption in heterogeneous catalysis. There have been a number of reports on oxidation reactions on heterogeneous catalysts, and we have at times presented highly speculative schemes. However, the results described above clarify an oxidation mechanism including (1) co-ordination of molecular oxygen (it is easily considered from the iridium analogue), (2) reaction on transition metal, and (3) displacement of the product on the

THE reactions of a number of small molecular species with square-planar d^8 complexes of Rh and Ir have been studied.¹ However, RhCl(CO)(PPh₃)₂ (I) has not been found to take up O₂ or CO to a measurable extent under conditions where the iridium analogue IrCl(CO)(PPh₃)₂ acts as an oxygen² or carbon monoxide³ carrier.

Catalytic oxidation of	f CO at	nd PPh _s with	RhCl(CO)L ₂ ^a
------------------------	---------	--------------------------	-------------------------------------

	•	-	-	· / -		
Catalyst ^b (mmole)	Solvent	CO (kg/cm²)	PPh ₃ (mmole)	Time (hr)	Yield, % CO ₂	6 (mmole) OPPh ₃
	C ₆ H ₆ C ₆ H ₆ C ₆ H ₆ C ₆ H ₆ EtOH	4 4 4 4	0-57 0-80 1-00	4 2 45 2 2	0 0 20 (0·8) 25 (1·1) 36 (1·6)	20 (0·11) 10 (0·08) 100 (1·00) —
(V) (0.62)	Me ₂ SO	4		2	58 (2·6)	

^a In a 25 ml stainless steel autoclave (O₂, 4 kg/cm^2), at 80–105°.

^b (I): RhCl(CO)(PPh₃)₂. (V): RhCl(CO)(Me₂SO)₂.

metal by the new substrate. The above elementary steps correspond to the chemisorption, surface reaction, and desorption of heterogeneous catalysis, respectively. We believe that the present work, a simple reaction catalysed

by stable co-ordination compounds, gives a clue to the role of metal in either homogeneous or heterogeneous catalysis.

(Received, May 27th, 1970; Com. 821.)

J. A. Osborn, F. H. Jardin, J. F. Young, and G. Wilkinson, J. Chem. Soc. (A), 1966, 1711.
L. Vaska, Science, 1963, 140, 809.
L. Vaska, Science, 1966, 152, 769.